login
A377449
E.g.f. satisfies A(x) = 1/(1 + A(x) * log(1 - x))^4.
3
1, 4, 56, 1388, 50444, 2436176, 147308248, 10720410984, 913099165080, 89150817350880, 9819313409197632, 1204676163038931744, 162935364815509750368, 24088567621306193343360, 3864931159784777490964608, 668886871993798772730203136, 124209455281616641852564586496
OFFSET
0,2
FORMULA
E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377448.
a(n) = 4 * Sum_{k=0..n} (5*k+3)!/(4*k+4)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2024
STATUS
approved