login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377447
E.g.f. satisfies A(x) = 1/(1 + A(x)^3 * log(1 - x)).
2
1, 1, 9, 158, 4246, 154924, 7162292, 401410680, 26453842848, 2004890580840, 171808440737928, 16427634731841552, 1733913231506623632, 200249346295125726624, 25118871041680870112352, 3400884689353492497349248, 494317826168209713209318400, 76773315675375252953433141120
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (4*k)!/(3*k+1)! * |Stirling1(n,k)|.
PROG
(PARI) a(n) = sum(k=0, n, (4*k)!/(3*k+1)!*abs(stirling(n, k, 1)));
CROSSREFS
Sequence in context: A380095 A024122 A377450 * A230180 A361047 A360777
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2024
STATUS
approved