login
A377450
E.g.f. satisfies A(x) = 1/(1 - A(x)^3 * (exp(x) - 1)).
2
1, 1, 9, 157, 4209, 153301, 7075209, 395858317, 26043658209, 1970447255941, 168569253106809, 16090431675455677, 1695423031884496209, 195469637688003331381, 24477403062879209570409, 3308367753565825806208237, 480047805083610542972470209, 74429414765710201956179803621
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (4*k)!/(3*k+1)! * Stirling2(n,k).
PROG
(PARI) a(n) = sum(k=0, n, (4*k)!/(3*k+1)!*stirling(n, k, 2));
CROSSREFS
Cf. A377453.
Sequence in context: A380095 A024122 A380516 * A377447 A230180 A361047
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 28 2024
STATUS
approved