login
A367158
E.g.f. satisfies A(x) = 1 - A(x)^3 * log(1 - x).
8
1, 1, 7, 92, 1824, 48804, 1649724, 67492872, 3243567552, 179139978072, 11181615816216, 778466939121552, 59811143359463952, 5027200928936108064, 458865351655379262432, 45201262487568977507328, 4779609140451030860102400, 539990133396500652971120640
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (3*k)!/(2*k+1)! * |Stirling1(n,k)|.
a(n) ~ 9 * n^(n-1) / (2^(5/2) * exp(23*n/27) * (exp(4/27) - 1)^(n - 1/2)). - Vaclav Kotesovec, Nov 10 2023
MATHEMATICA
Table[Sum[(-1)^(n-k) * (3*k)!/(2*k+1)! * StirlingS1[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 10 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (3*k)!/(2*k+1)!*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2023
STATUS
approved