login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292227
Numerators of partial sums of the series 1 + 2*Sum_{k >= 1} 1/(4*k^4 + 1).
2
1, 7, 93, 467, 19173, 1170203, 19898781, 2248887383, 65223261317, 11806034873107, 694496744821, 625756401440091, 195865032043506253, 14298321093992118279, 6019647565828140441989, 222728486906331381429243, 24277533643722234159157217, 14882189966220076173164214151
OFFSET
0,2
COMMENTS
The corresponding denominators are given in A292228.
The value of the series 1 + 2*Sum_{k >= 1} 1/(4*k^4 +1) is (Pi/2)*tanh(Pi/2) given in A228048. See the Koecher reference, p. 189.
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, p. 189.
LINKS
FORMULA
a(n) = numerators(s(n)) with the rationals (in lowest terms) s(n) = 1 + 2*Sum_{k=1..n} 1/(4*k^4 + 1), n >= 0.
EXAMPLE
The rationals s(n) begin: 1, 7/5, 93/65, 467/325, 19173/13325, 1170203/812825, 19898781/13818025, 2248887383/1561436825,...
s(10^5) = 1.4406595199775144260 (Maple 20 digits), to be compared with 1.4406595199775145926 (20 digits from A228048).
MAPLE
seq(numer(t), t=ListTools:-PartialSums([1, seq(2/(4*k^4+1), k=1..30)]));
MATHEMATICA
{1}~Join~Numerator[1 + 2 Accumulate[Array[1/(4 #^4 + 1) &, 17]]] (* Michael De Vlieger, Oct 30 2017 *)
PROG
(PARI) a(n) = numerator(1+2*sum(k=1, n, 1/(4*k^4 + 1))); \\ Michel Marcus, Oct 30 2017
CROSSREFS
Sequence in context: A267204 A367158 A278687 * A006178 A029808 A379910
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 30 2017
STATUS
approved