login
A292230
Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that the maximum of the node outdegrees equals four.
2
1, 2, 7, 22, 72, 230, 751, 2442, 8006, 26280, 86604, 285994, 946866, 3140812, 10438300, 34747649, 115849084, 386779317, 1292998720, 4327654320, 14500841169, 48639319376, 163308287353, 548820437392, 1845999502151, 6214297279692, 20935992503127, 70586182742450
OFFSET
4,2
EXAMPLE
: a(6) = 7:
: o o o o
: / \ / \ /( )\ / | \
: o N o N o N N N o N N
: / \ /( )\ / \ /( )\
: o N o N N N o N N N N N
: /( )\ ( ) ( )
: N N N N N N N N
:
: o o o
: / \ /( )\ / ( \ \
: o o o N N N o o N N
: /( )\ ( ) /|\ ( ) ( )
: N N N N N N N N N N N N N
:
MAPLE
b:= proc(n, i, v, k) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(v=n, 1, add(binomial(A(i, k)+j-1, j)*
b(n-i*j, i-1, v-j, k), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember; `if`(n<2, n,
add(b(n, n+1-j, j, k), j=2..min(n, k)))
end:
a:= n-> A(n, 4)-A(n, 3):
seq(a(n), n=4..35);
CROSSREFS
Column k=4 of A292086.
Sequence in context: A092690 A030186 A289592 * A162770 A116387 A337805
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 12 2017
STATUS
approved