login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292230
Number of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that the maximum of the node outdegrees equals four.
2
1, 2, 7, 22, 72, 230, 751, 2442, 8006, 26280, 86604, 285994, 946866, 3140812, 10438300, 34747649, 115849084, 386779317, 1292998720, 4327654320, 14500841169, 48639319376, 163308287353, 548820437392, 1845999502151, 6214297279692, 20935992503127, 70586182742450
OFFSET
4,2
EXAMPLE
: a(6) = 7:
: o o o o
: / \ / \ /( )\ / | \
: o N o N o N N N o N N
: / \ /( )\ / \ /( )\
: o N o N N N o N N N N N
: /( )\ ( ) ( )
: N N N N N N N N
:
: o o o
: / \ /( )\ / ( \ \
: o o o N N N o o N N
: /( )\ ( ) /|\ ( ) ( )
: N N N N N N N N N N N N N
:
MAPLE
b:= proc(n, i, v, k) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(v=n, 1, add(binomial(A(i, k)+j-1, j)*
b(n-i*j, i-1, v-j, k), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember; `if`(n<2, n,
add(b(n, n+1-j, j, k), j=2..min(n, k)))
end:
a:= n-> A(n, 4)-A(n, 3):
seq(a(n), n=4..35);
CROSSREFS
Column k=4 of A292086.
Sequence in context: A092690 A030186 A289592 * A162770 A116387 A337805
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 12 2017
STATUS
approved