The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162770 a(n) = ((2+sqrt(5))*(1+sqrt(5))^n + (2-sqrt(5))*(1-sqrt(5))^n)/2. 1
 2, 7, 22, 72, 232, 752, 2432, 7872, 25472, 82432, 266752, 863232, 2793472, 9039872, 29253632, 94666752, 306348032, 991363072, 3208118272, 10381688832, 33595850752, 108718456832, 351820316672, 1138514460672, 3684310188032 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Binomial transform of A162963. Inverse binomial transform of A001077 without initial 1. LINKS Index entries for linear recurrences with constant coefficients, signature (2,4). FORMULA a(n) = 2*a(n-1) + 4*a(n-2) for n > 1; a(0) = 2, a(1) = 7. G.f.: (2+3*x)/(1-2*x-4*x^2). a(n) = 2^(n-1) * A000032(n+3). - Diego Rattaggi, Jun 24 2020 MATHEMATICA LinearRecurrence[{2, 4}, {2, 7}, 30] (* Harvey P. Dale, Jan 13 2015 *) PROG (MAGMA) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((2+r)*(1+r)^n+(2-r)*(1-r)^n)/2: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 19 2009 CROSSREFS Cf. A000032, A001077, A162963. Sequence in context: A030186 A289592 A292230 * A116387 A294006 A322573 Adjacent sequences:  A162767 A162768 A162769 * A162771 A162772 A162773 KEYWORD nonn AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009 EXTENSIONS Edited and extended beyond a(5) by Klaus Brockhaus, Jul 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 21:27 EDT 2020. Contains 337440 sequences. (Running on oeis4.)