

A292225


Row sums of irregular triangle A292224. a(n) gives the total number of admissible tuples starting with 0 in the interval [0, 1, ..., n1].


1



1, 1, 2, 2, 3, 3, 6, 6, 10, 10, 14, 14, 28, 28, 41, 41, 57, 57, 105, 105, 160, 160, 210, 210, 383, 383, 531, 531, 678, 678, 1343, 1343, 1923, 1923, 2482, 2482, 4402, 4402, 5849, 5849, 7824, 7824, 14064, 14064, 18292, 18292, 23981, 23981, 39745, 39745, 57307, 57307, 71639, 71639, 117846, 117846
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

This sequence is given in column 2 of Table 2, p. 27, of the Engelsma link.
See A292224 for the reason for the repetitions for n = 2*k+1 and n = 2*(k+1) for k >= 0, the definition of "admissible", references, and examples of these admissible ktuples for n = 1..10 (with k = 1, 2, ..., A023193(n)).


LINKS

Table of n, a(n) for n=1..56.
Thomas J. Engelsma, Permissible Patterns of Primes, September 2009, Table 2, p. 27.


FORMULA

a(n) = Sum_{k=1..A023193(n)} A292224(n, k), for n >= 1.


CROSSREFS

Cf. A023193, A292224.
Sequence in context: A032155 A116932 A240579 * A238786 A238547 A116450
Adjacent sequences: A292222 A292223 A292224 * A292226 A292227 A292228


KEYWORD

nonn


AUTHOR

Wolfdieter Lang, Oct 09 2017


EXTENSIONS

Terms a(27) .. a(56) from Engelsma's Table 2 (there are also a(57)..a(62) given but a(62) should be 364545 if a(61) = 364545 is correct).  Wolfdieter Lang, Oct 17 2017


STATUS

approved



