login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292222
Triangle corresponding to the partition array of the M_1 multinomials (A036038).
1
1, 1, 2, 1, 3, 6, 1, 10, 12, 24, 1, 15, 50, 60, 120, 1, 41, 180, 300, 360, 720, 1, 63, 497, 1260, 2100, 2520, 5040, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880, 1, 637, 13680, 95640, 322560, 584640, 907200, 1512000, 1814400, 3628800
OFFSET
1,3
COMMENTS
Abramowitz-Stegun (A-St) M_1 multinomials as partition array (partitions in A-St order) are given in A036038. See this for details.
This is the sub-triangle of A226874(n,k) for n >= k >= 1 (here k=m).
The M_1 multinomials for a partition written in exponent form P = [1^e[1], 2^e[2], ... n^e[n]] with nonnegative e[j], for j =1, ..., n, is M_1(P) = n!/Product_{j=1..n} j!^e[j]. See the A-St link.
LINKS
Milton Abramowitz and Irene A. Stegun, editors, Multinomials: M_1, M_2 and M_3, Handbook of Mathematical Functions, December 1972, pp. 831-2.
FORMULA
T(n, m) = sum over the A036038 entries in row n with parts number m, for m >= n >= 1.
EXAMPLE
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 2
3: 1 3 6
4: 1 10 12 24
5: 1 15 50 60 120
6: 1 41 180 300 360 720
7: 1 63 497 1260 2100 2520 5040
8: 1 162 1484 6496 10080 16800 20160 40320
9: 1 255 5154 20916 58464 90720 151200 181440 362880
10: 1 637 13680 95640 322560 584640 907200 1512000 1814400 3628800
...
T(5, 3) =50 because the partitions are [1^2, 3^1] and [1^1, 2^2] with M_1 numbers 20 = A036038(5, 4) and 30 = A036038(5, 5), respectively, adding to 50.
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]];
t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]];
Table[Table[t[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 29 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A036038, A130534 (M_2 triangle = |Stirling1|), A008277 (M_3 triangle = Stirling2), A226874 (M_1 triangle including empty partition).
Sequence in context: A379751 A248686 A059434 * A182928 A141476 A340114
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, Sep 29 2017
STATUS
approved