OFFSET
0,1
COMMENTS
This gives one half of the z-sequence for the generalized unsigned Lah number Sheffer matrix Lah[4,3] = A292219.
For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link.
a(n) = (-1)^n * A006963(n+2) for all n >= 0. - Michael Somos, Jul 02 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..365
FORMULA
a(n) = [x^n/n!] (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-3/2))/x.
a(0) = 3, a(n) = (-2)^n*Product_{j=1..n} (1 + 2*j)/(n+1) = ((-2)^n/(n+1))*A001147(n+1), n >= 1.
0 = a(n)*(-2880*a(n+2) +2760*a(n+3) +952*a(n+4) +45*a(n+5)) +a(n+1)*(+216*a(n+2) -328*a(n+3) -81*a(n+4) -2*a(n+5)) +a(n+2)*(+12*a(n+3) +2*a(n+4)) for all n>0. - Michael Somos, Jul 02 2018
EXAMPLE
The sequence z(4,3;n) = 2*a(n) begins: {6, -6, 40, -420, 6048, -110880, 2471040, -64864800, 1960358400, -67044257280, 2559871641600, ...}.
MAPLE
seq(coeff(series(factorial(n)*(1/2)*(1+4*x)*(1-(1+4*x)^(-3/2))/x, x, n+1), x, n), n=0..20); # Muniru A Asiru, Jul 29 2018
MATHEMATICA
a[ n_] := If[ n < 1, 3 Boole[n == 0], (-2)^n (2 n + 1)!! / (n + 1)]; (* Michael Somos, Jul 02 2018 *)
With[{nn=20}, CoefficientList[Series[1/2 (1+4x) (1-(1+4x)^(-3/2))/x, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Dec 24 2018 *)
PROG
(PARI) {a(n) = if( n<1, 3*(n==0), (-1)^n * (2*n + 1)! / (n + 1)!)}; /* Michael Somos, Jul 02 2018 */
(Magma) [3, -3] cat [(-1)^n*Factorial(2*n+1)/Factorial(n+1): n in [2..30]]; // G. C. Greubel, Jul 28 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 23 2017
STATUS
approved