OFFSET
0,3
COMMENTS
LINKS
Robert Israel, Table of n, a(n) for n = 0..366
FORMULA
a(n) = [x^n/n!] (1/2)*(1 + 4*x)*(1 - (1 + 4*x)^(-1/2))/x.
a(0) = 1, a(n) = -(-2)^n*Product_{j=1..n} (2*j - 1)/(n+1) = -((-2)^n/(n+1))*A001147(n), n >= 1.
a(n) ~ -(-1)^n * n^(n-1) * 2^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Sep 18 2017
a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n) for n >= 1. - Robert Israel, May 10 2020
EXAMPLE
The sequence z(4,1;n) = 2*a(n) begins: {2,2,-8,60,-672,10080,-190080,4324320,-115315200,3528645120,-121898649600,...}.
MAPLE
f:= gfun:-rectoproc({a(n+1) = -2*(1 + 2*n)*(1 + n)*a(n)/(2 + n), a(0)=1, a(1)=1}, a(n), remember):
map(f, [$0..30]); # Robert Israel, May 10 2020
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/2 (1+4x) (1-(1+4x)^(-1/2))/x, {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 01 2021 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 13 2017
STATUS
approved