login
Row sums of irregular triangle A292224. a(n) gives the total number of admissible tuples starting with 0 in the interval [0, 1, ..., n-1].
1

%I #14 Oct 18 2017 18:05:20

%S 1,1,2,2,3,3,6,6,10,10,14,14,28,28,41,41,57,57,105,105,160,160,210,

%T 210,383,383,531,531,678,678,1343,1343,1923,1923,2482,2482,4402,4402,

%U 5849,5849,7824,7824,14064,14064,18292,18292,23981,23981,39745,39745,57307,57307,71639,71639,117846,117846

%N Row sums of irregular triangle A292224. a(n) gives the total number of admissible tuples starting with 0 in the interval [0, 1, ..., n-1].

%C This sequence is given in column 2 of Table 2, p. 27, of the Engelsma link.

%C See A292224 for the reason for the repetitions for n = 2*k+1 and n = 2*(k+1) for k >= 0, the definition of "admissible", references, and examples of these admissible k-tuples for n = 1..10 (with k = 1, 2, ..., A023193(n)).

%H Thomas J. Engelsma, <a href="http://www.opertech.com/primes/permissiblepatterns.pdf">Permissible Patterns of Primes</a>, September 2009, Table 2, p. 27.

%F a(n) = Sum_{k=1..A023193(n)} A292224(n, k), for n >= 1.

%Y Cf. A023193, A292224.

%K nonn

%O 1,3

%A _Wolfdieter Lang_, Oct 09 2017

%E Terms a(27) .. a(56) from Engelsma's Table 2 (there are also a(57)..a(62) given but a(62) should be 364545 if a(61) = 364545 is correct). - _Wolfdieter Lang_, Oct 17 2017