login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367156
E.g.f. satisfies A(x) = 1 + A(x)^2 * log(1 + x*A(x)).
1
1, 1, 5, 53, 862, 19024, 531520, 17991630, 715803832, 32740331784, 1692869465304, 97648275936672, 6216826224534624, 433030023365176704, 32757854472395131776, 2674517780432621462640, 234408432378333868580736, 21951787708820941049727360
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} (n+2*k)!/(n+k+1)! * Stirling1(n,k).
a(n) ~ s^2 * sqrt((2-s) / (-2*s^3 + 5*s^2 + 4*s - 4)) * n^(n-1) / (r^n * exp(n)), where r = 0.1660717422585514666099422406611296365893647754849... and s = 1.527702505127565301209742745041094767065375131037... are real roots of the system of equations 1 + s^2*log(1 + r*s) = s, 2/s - r*s^2/(1 + r*s) = 1. - Vaclav Kotesovec, Nov 07 2023
MATHEMATICA
Table[Sum[(n + 2*k)!/(n + k + 1)!*StirlingS1[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 07 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, (n+2*k)!/(n+k+1)!*stirling(n, k, 1));
CROSSREFS
Sequence in context: A036916 A118583 A090360 * A123130 A094089 A357343
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2023
STATUS
approved