The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118583 Numerator of sum of first p reciprocals of p-simplex numbers divided by p^4, where p = prime(n) for n > 2. 1
 1, 5, 53, 789, 237493, 2576561, 338350897, 616410400171, 2603853251291, 5745400286707685, 3081677433937346539, 41741941495866750557, 7829195555633964779233, 21066131970056662377432067 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 LINKS G. C. Greubel, Table of n, a(n) for n = 3..250 Eric Weisstein's World of Mathematics, Composition. Eric Weisstein's World of Mathematics, Tetrahedral Number. Eric Weisstein's World of Mathematics, Triangular Number. FORMULA a(n) = numerator( Sum_{k=1..prime(n)} ( 1/binomial( k + prime(n) - 1, prime(n) ) ))/prime(n)^4 for n > 2. EXAMPLE Prime(3) = 5. a(3) = 1 because A118431(5)/5^4 = 1, where A118431(5) = Numerator[ 1/C(4+1,5) + 1/C(4+2,5) + 1/C(4+3,5) + 1/C(4+4,5) +1/C(4+5,5) ] = Numerator[ 1/1 + 1/6 + 1/21 + 1/56 + 1/126 ] = 625. MATHEMATICA Table[Numerator[Sum[1 /Binomial[ n+Prime[k]-1, Prime[k]], {n, 1, Prime[k]} ]]/ Prime[k]^4, {k, 3, 25}] PROG (PARI) for(n=3, 10, print1(numerator(sum(k=1, prime(n), 1/(binomial(k+ prime(n)-1, prime(n)))))/prime(n)^4, ", ")) \\ G. C. Greubel, Nov 25 2017 CROSSREFS Cf. A022998 = Numerator of sum of reciprocals of first n triangular numbers Cf. A118391 = Numerator of sum of reciprocals of first n tetrahedral numbers A000292. Cf. A118431 = Numerator of sum of reciprocals of first n 5-simplex numbers A000389. Sequence in context: A036910 A235371 A036916 * A090360 A123130 A094089 Adjacent sequences:  A118580 A118581 A118582 * A118584 A118585 A118586 KEYWORD nonn AUTHOR Alexander Adamchuk, May 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 08:41 EST 2021. Contains 349627 sequences. (Running on oeis4.)