OFFSET
1,1
COMMENTS
All the terms seem to be multiple of 3.
LINKS
Zhining Yang, Table of n, a(n) for n = 1..66
EXAMPLE
a(2)=18, because 18^3 = 9^3 + 12^3 + 15^3 = 2^3 + 12^3 + 16^3 and no integer less than 18 has 2 solutions.
MATHEMATICA
a = Table[SelectFirst[Table[{k, Length@Select[PowersRepresentations[k^3, 3, 3], #[[1]] > 0 &]}, {k, 3, 500, 3}], #[[2]] == k &], {k, 10}]
PROG
(Python)
from itertools import count
from sympy.solvers.diophantine.diophantine import power_representation
def A377444(n): return next(filter(lambda k:len(list(power_representation(k**3, 3, 3)))==n, count(1))) # Chai Wah Wu, Nov 19 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zhining Yang, Oct 28 2024
STATUS
approved