login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290582
Numbers m > 2 such that every divisor > 2 is the sum of two or more consecutive divisors.
0
6, 18, 54, 66, 162, 486, 726, 1458, 4374, 7986, 13122, 39366, 87846, 118098, 354294, 530226, 966306, 1062882, 3188646, 9565938, 10629366, 28697814, 43035786, 86093442, 116923026, 258280326, 578476566, 774840978, 1286153286, 2324522934, 6973568802, 14147686146
OFFSET
1,1
COMMENTS
a(n) is even because the divisors are {d(1), d(2), d(3), ...} with d(1) = 1, and if d(2) is odd then d(3) = d(2) + 1 is even, a contradiction. Therefore d(2) = 2 and d(3) = 3.
a(n) == 0 (mod 6).
The sequence is infinite because the numbers of the form 2*3^i (A025192) and the numbers of the form 6*11^i for i >= 1 are in the sequence.
The divisors of 2*3^i are {d(1), d(2), d(3), ...} = {1, 2, 3, 6, 9, 18, 27, 54, ...} where d(1 + 2i) = 3^i for i >= 0 and d(2i) = 2*3^(i-1) for i >= 1.
The divisors of the form 6*11^k are {d(1), d(2), d(3), ...} = {1, 2, 3, 6, 11, 22, 33, 66, 121, ...} where d(i + 4j) = i*11^j for i >= 1 and j >= 0 and where d(4j) = 6*11^(j-1) for j >= 1.
No term can be divisible by 4, 5, 7, 9, 13, 17, or 19. Up to 5*10^11, the only terms which are divisible by a prime > 11 are 530226 = 2*3^5*1091, 43035786 = 2*3^7*9839, 578476566 = 2*3^5*1091^2, and 2*3^7*9839^2. Larger such terms are 2*3*11^12*6904542428779 and 2*3^29*308836698141971. - Giovanni Resta, Aug 07 2017
EXAMPLE
66 is in the sequence because the divisors are {1, 2, 3, 6, 11, 22, 33, 66} and:
3 = 2 + 1;
6 = 3 + 2 + 1;
11 = 6 + 3 + 2;
22 = 11 + 6 + 3 + 2;
33 = 22 + 11;
66 = 33 + 22 + 11.
MAPLE
with(numtheory):nn:=10^5:
for n from 4 to nn do:
d:=divisors(n):n1:=nops(d):it:=0:
for k from 3 to n1 do:
for j from 1 to k-1 do:
s:=sum('d[k-i]', 'i'=1..j):
if s=d[k]
then
it:=it+1:
else
fi:
od:
od:
if n1>2 and it = n1-2
then
printf(`%d, `, n):
else
fi:
od:
MATHEMATICA
Select[Range[3, 10^5], Function[d, Function[t, AllTrue[ TakeWhile[ Reverse@ d, # > 2 &], MemberQ[t, #] &]]@ Union@ Flatten@ Array[Total /@ Partition[d, #, 1] &, Length@ d - 1, 2]]@ Divisors@ # &] (* Michael De Vlieger, Aug 07 2017 *)
PROG
(PARI) isokds(k, v) = {vsmall = select(x->(x < k), v); for (i=1, #vsmall, s = v[i]; if (s > k, break); for (j=i+1, #vsmall, s += vsmall[j]; if (s > k, break, if (k == s, return(1))); ); ); return (0); }
isok(n) = {if (n>2, my(d = divisors(n)); for (i=1, #d, if (d[i] > 2, if (! isokds(d[i], d), return (0)); ); ); return(1); )} \\ Michel Marcus, Aug 07 2017
CROSSREFS
Sequence in context: A001216 A318484 A079843 * A346071 A377444 A076941
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 07 2017
EXTENSIONS
Name corrected by Jon E. Schoenfield, Sep 11 2017
STATUS
approved