login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290584
a(n) is the factor P(n) having prime factors between n^2 and 2*n^2 in A285388(n) = R(n)P(n) for n > 1, a(1)=1.
1
1, 35, 2431, 6678671, 2756205443, 2781907990776503, 3749562977351496827, 34227405074603836560875299, 10994118229823875586790445536799, 3383080509296917481189798760796480670771162183
OFFSET
1,2
COMMENTS
All A290564(n) prime factors in the interval occur with multiplicity 1. Thus a(n) is squarefree.
FORMULA
a(n) = A285388(n)/A290583(n).
EXAMPLE
a(3) = 2431: A285388(3) = 36465 = (R(3) = 15)*(P(3) = 11*13*17 = 2431);
a(4) = 6678671: A285388(4) = 300540195 = (R(4) = 45)*(P(4) = 17*19*23*29*31 = 6678671).
MATHEMATICA
Table[First@ Apply[Times, Map[Power, #]] &@ Select[FactorInteger@ Numerator[Sum[Binomial[2 k, k]/4^k, {k, 0, n^2 - 1}]/n], Function[p, # <= First@ p < 2 #] &[n^2]], {n, 10}] (* Michael De Vlieger, Aug 10 2017 *)
PROG
(PARI) a285388(n) = my(m=n*binomial(2*n^2, n^2)); m>>valuation(m, 2);
a(n) = if (n==1, 1, my(f=factor(a285388(n))); for (k=1, #f~, if ((n^2 > f[k, 1]) || (f[k, 1] > 2*n^2), f[k, 1] = 1)); factorback(f)); \\ Michel Marcus, Aug 07 2017
CROSSREFS
Cf. A285388, A290583 (R()), A290564 (number of primes in interval).
Sequence in context: A202921 A215291 A249886 * A174749 A184124 A343586
KEYWORD
nonn
AUTHOR
Ralf Steiner, Aug 07 2017
STATUS
approved