login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316359
a(n) is the number of solutions to the Diophantine equation i^3 + j^3 + k^3 = n^3, where 0 < i <= j <= k.
4
0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 3, 0, 1, 1, 2, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 3, 0, 0, 2, 2, 0, 1, 0, 1, 2, 3, 0, 3, 1, 0, 4
OFFSET
1,18
COMMENTS
The first number to have a nonzero number of solutions is 6, which is 3^3 + 4^3 + 5^3 = 6^3. Its cube 216 has been called Plato's number in reference to this.
First occurrence of k=0,1,2...: 0, 6, 18, 54, 87, 108, 216, 174, 348, 396, 324, 696, 864, 492, etc. - Robert G. Wilson v, Jul 02 2018
LINKS
Arlu Genesis A. Padilla, Table of n, a(n) for n = 1..10000
EXAMPLE
a(18)=2, because 18^3 = 9^3 + 12^3 + 15^3 = 2^3 + 12^3 + 16^3.
MATHEMATICA
Array[Count[PowersRepresentations[#^3, 3, 3], _?(FreeQ[Differences@ #, 0] &)] &, 105] (* Michael De Vlieger, Jun 30 2018 *)
PROG
(PARI) a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^3 + j^3 + k^3 == n^3))); \\ Michel Marcus, Jul 02 2018
(PARI) a(n)={sum(i=1, n, sum(j=1, i, my(k); ispower(n^3-j^3-i^3, 3, &k) && k>=1 && k<=j ))} \\ Andrew Howroyd, Jul 07 2018
(Python)
from sympy.solvers.diophantine.diophantine import power_representation
def A316359(n): return len(list(power_representation(n**3, 3, 3))) # Chai Wah Wu, Nov 19 2024
CROSSREFS
Cf. A046080.
Sequence in context: A286106 A079677 A286564 * A080080 A093662 A284256
KEYWORD
nonn
AUTHOR
STATUS
approved