login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286106
a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).
6
0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
LINKS
FORMULA
a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).
PROG
(Scheme) (define (A286106 n) (if (= 1 n) 0 (- (A286105 (A285735 n)) (A286105 (A285734 n)))))
(Python)
from sympy.ntheory.factor_ import core
def issquarefree(n): return core(n) == n
def a285734(n):
if n==1: return 0
j=n//2
while True:
if issquarefree(j) and issquarefree(n - j): return j
else: j-=1
def a285735(n): return n - a285734(n)
def a286105(n): return 0 if n==1 else 1 + max(a286105(a285734(n)), a286105(a285735(n)))
def a286106(n): return 0 if n==1 else a286105(a285735(n)) - a286105(a285734(n))
print([a286106(n) for n in range(1, 121)]) # Indranil Ghosh, May 02 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, May 02 2017
STATUS
approved