login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).
6

%I #17 Apr 30 2021 06:05:55

%S 0,0,1,0,1,0,2,1,1,0,0,0,1,0,1,1,0,0,2,0,0,0,1,1,1,0,0,0,0,0,0,0,1,0,

%T 0,1,0,0,0,-1,-1,0,0,0,1,0,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,-1,

%U 0,0,0,0,0,1,0,1,0,-1,0,0,1,0,0,-1,0,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

%N a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).

%H Antti Karttunen, <a href="/A286106/b286106.txt">Table of n, a(n) for n = 1..10000</a>

%F a(1) = 0, and for n > 1, a(n) = A286105(A285735(n)) - A286105(A285734(n)).

%o (Scheme) (define (A286106 n) (if (= 1 n) 0 (- (A286105 (A285735 n)) (A286105 (A285734 n)))))

%o (Python)

%o from sympy.ntheory.factor_ import core

%o def issquarefree(n): return core(n) == n

%o def a285734(n):

%o if n==1: return 0

%o j=n//2

%o while True:

%o if issquarefree(j) and issquarefree(n - j): return j

%o else: j-=1

%o def a285735(n): return n - a285734(n)

%o def a286105(n): return 0 if n==1 else 1 + max(a286105(a285734(n)), a286105(a285735(n)))

%o def a286106(n): return 0 if n==1 else a286105(a285735(n)) - a286105(a285734(n))

%o print([a286106(n) for n in range(1, 121)]) # _Indranil Ghosh_, May 02 2017

%Y Cf. A285734, A285735, A286105, A286107.

%K sign

%O 1,7

%A _Antti Karttunen_, May 02 2017