login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286103
a(1) = 0; for n > 1, a(n) = 1 + min(a(A285734(n)), a(A285735(n))).
3
0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
1,4
COMMENTS
By invoking A285734 and A285735 recursively, any natural number n > 1 can be decomposed as a sum of successively smaller squarefree numbers, until only n instances of 1's remain. This process can be depicted as a binary tree, where 1's are leaves, and any other node n branches to the left as A285734(n) and to the right as A285735(n). This sequence gives the distance from the root of tree (n) to a leaf (1) that is nearest to the root.
LINKS
FORMULA
a(1) = 0; for n > 1, a(n) = 1 + min(a(A285734(n)), a(A285735(n))).
a(1) = 0; for n > 1, a(n) = 1 + a(A286104(n)).
Other identities. For all n >= 1:
a(2*A005117(n)) = 1+a(A005117(n)).
EXAMPLE
A285734(2) = A285735(2) = 1, thus a tree with root 2 has just two leaves 1 and 1, so the minimum distance to them is 1, thus a(2) = 1.
A285734(3) = 1 and A285735(3) = 2, thus a tree with root 3 has one immediate leave 1 and the subtree 2 as its other branch, so the minimum distance to a leaf (1) is one edge, thus a(3) = 1.
A285734(5) = 2 and A285735(3) = 3, thus a tree with root 5 has the subtree 2 as its other branch, and the subtree 3 as the other branch, so the minimum distance to a leaf (1) is 1 + shortest distance computed for cases 2 and 3, thus a(5) = 1 + min(1,1) = 2.
The tree with root 17 looks like this:
17
|
..................../ \..................
7 10
2......../ \........5 5......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
1 1 2 3 2 3 2 3
1 1 1 2 1 1 1 2 1 1 1 2
1 1 1 1 1 1
We see that the shortest distance to 1 from the root is at the left border of the tree, just three edges, thus a(17) = 3.
PROG
(Scheme, with memoization-macro definec)
(definec (A286103 n) (if (= 1 n) 0 (+ 1 (min (A286103 (A285734 n)) (A286103 (A285735 n))))))
(definec (A286103 n) (if (= 1 n) 0 (+ 1 (A286103 (A286104 n)))))
(Python)
from sympy.ntheory.factor_ import core
def issquarefree(n): return core(n) == n
def a285734(n):
if n==1: return 0
j=n//2
while True:
if issquarefree(j) and issquarefree(n - j): return j
else: j-=1
def a285735(n): return n - a285734(n)
def a286103(n): return 0 if n==1 else 1 + min(a286103(a285734(n)), a286103(a285735(n)))
print([a286103(n) for n in range(1, 121)]) # Indranil Ghosh, May 02 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 02 2017
STATUS
approved