login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085362 a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i). 24

%I #54 Mar 28 2023 14:00:29

%S 1,2,8,34,150,678,3116,14494,68032,321590,1528776,7301142,35003238,

%T 168359754,812041860,3926147730,19022666310,92338836390,448968093320,

%U 2186194166950,10659569748370,52037098259090,254308709196660

%N a(0)=1; for n>0, a(n) = 2*5^(n-1) - (1/2)*Sum_{i=1..n-1} a(i)*a(n-i).

%C Number of bilateral Schroeder paths (i.e. lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at even (zero, positive or negative) levels. Example: a(2)=8 because we have UDUD, UUDD, UHD, UDDU and their reflections in the x-axis. First differences of A026375. - _Emeric Deutsch_, Jan 28 2004

%C From _G. C. Greubel_, May 22 2020: (Start)

%C This sequence is part of a class of sequences, for m >= 0, with the properties:

%C a(n) = 2*m*(4*m+1)^(n-1) - (1/2)*Sum_{k=1..n-1} a(k)*a(n-k).

%C a(n) = Sum_{k=0..n} m^k * binomial(n-1, n-k) * binomial(2*k, k).

%C a(n) = (2*m) * Hypergeometric2F1(-n+1, 3/2; 2; -4*m), for n > 0.

%C n*a(n) = 2*((2*m+1)*n - (m+1))*a(n-1) - (4*m+1)*(n-2)*a(n-2).

%C (4*m + 1)^n = Sum_{k=0..n} Sum_{j=0..k} a(j)*a(k-j).

%C G.f.: sqrt( (1 - t)/(1 - (4*m+1)*t) ).

%C This sequence is the case of m=1. (End)

%H Vincenzo Librandi, <a href="/A085362/b085362.txt">Table of n, a(n) for n = 0..200</a>

%H László Németh, <a href="https://arxiv.org/abs/1905.13475">Tetrahedron trinomial coefficient transform</a>, arXiv:1905.13475 [math.CO], 2019.

%F G.f.: sqrt((1-x)/(1-5*x)).

%F Sum_{i=0..n} (Sum_{j=0..i} a(j)*a(i-j)) = 5^n.

%F D-finite with recurrence: a(n) = (2*(3*n-2)*a(n-1)-5*(n-2)*a(n-2)])n; a(0)=1, a(1)=2. - _Emeric Deutsch_, Jan 28 2004

%F a(n) ~ 2*5^(n-1/2)/sqrt(Pi*n). - _Vaclav Kotesovec_, Oct 14 2012

%F G.f.: G(0), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)* (2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 22 2013

%F a(n) = Sum_{k=0..n} binomial(2*k,k)*binomial(n-1,n-k). - _Vladimir Kruchinin_, May 30 2016

%F a(n) = 2*hypergeom([3/2, 1-n], [2], -4) for n>0. - _Peter Luschny_, Jan 30 2017

%F a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (n+k) * a(k). - _Seiichi Manyama_, Mar 28 2023

%p a := n -> `if`(n=0,1,2*hypergeom([3/2, 1-n], [2], -4)):

%p seq(simplify(a(n)), n=0..22); # _Peter Luschny_, Jan 30 2017

%t CoefficientList[Series[Sqrt[(1-x)/(1-5x)], {x, 0, 25}], x]

%o (PARI) my(x='x+O('x^66)); Vec(sqrt((1-x)/(1-5*x))) \\ _Joerg Arndt_, May 10 2013

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt((1-x)/(1-5*x)) )); // _G. C. Greubel_, May 23 2020

%o (Sage)

%o def A085362_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( sqrt((1-x)/(1-5*x)) ).list()

%o A085362_list(30) # _G. C. Greubel_, May 23 2020

%Y Bisection of A026392.

%Y Cf. A000351 (5^n), A026375, A026387, A085363, A085364.

%Y Cf. A110170, A162478, A359758, A360132.

%K nonn,easy

%O 0,2

%A Mario Catalani (mario.catalani(AT)unito.it), Jun 25 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 02:48 EDT 2024. Contains 372300 sequences. (Running on oeis4.)