|
|
A360321
|
|
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(n-1,n-k) * binomial(2*k,k).
|
|
4
|
|
|
1, 2, 16, 130, 1070, 8902, 74724, 631902, 5376840, 45990070, 395106656, 3407196982, 29477061166, 255733684010, 2224098916300, 19384492018770, 169270624419390, 1480625235653670, 12970844831940000, 113785067475668550, 999400688480388570
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: sqrt( (1-5*x)/(1-9*x) ).
n*a(n) = 2*(7*n-6)*a(n-1) - 45*(n-2)*a(n-2).
Sum_{i=0..n} Sum_{j=0..i} (1/5)^i * a(j) * a(i-j) = (9/5)^n.
|
|
PROG
|
(PARI) a(n) = sum(k=0, n, 5^(n-k)*binomial(n-1, n-k)*binomial(2*k, k));
(PARI) my(N=30, x='x+O('x^N)); Vec(sqrt((1-5*x)/(1-9*x)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|