Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Dec 24 2024 09:37:54
%S 1,0,1,4,9,4,1,6,0,6,4,0,9,6,5,3,6,2,5,0,2,1,2,0,2,5,5,4,2,7,4,5,2,0,
%T 2,8,5,9,4,1,6,8,9,3,0,7,5,3,0,2,9,9,7,9,2,0,1,7,4,8,9,1,0,6,7,7,6,5,
%U 9,7,4,7,6,2,5,8,2,4,4,0,2,2,1,3,6,4,7,0,3,5,4,2,2,8,2,5,6,6,9,4,9,4,5,8,6
%N Decimal expansion of Gieseking's constant.
%C The largest possible volume of a tetrahedron in hyperbolic space. Named by Adams (1998) after German mathematician Hugo Gieseking (1887 - 1915). - _Amiram Eldar_, Aug 14 2020
%D J. Borwein and P. Borwein, Experimental and computational mathematics: Selected writings, Perfectly Scientific Press, 2010, p. 106.
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 233, 512.
%H G. C. Greubel, <a href="/A143298/b143298.txt">Table of n, a(n) for n = 1..10000</a>
%H Colin C. Adams, <a href="http://www.jstor.org/stable/2690774">The newest inductee in the Number Hall of Fame</a>, Mathematics Magazine, Vol. 71, No. 5 (1998), pp. 341-349.
%H John Campbell, <a href="https://hal.archives-ouvertes.fr/hal-03644515">Proof of a conjecture due to Sun concerning Catalan's constant</a>, hal-03644515 [math], 2022.
%H John M. Campbell, <a href="https://hosted.math.rochester.edu/ojac/vol18/290.pdf">On two conjectures due to Sun</a>, Univ. Rochester, Online J. Analytic Comb. (2023) Issue 18, Art No. 4. See p. 4.
%H P. J. de Doelder, <a href="http://dx.doi.org/10.1016/0377-0427(84)90007-4">On the Clausen integral Cl_2(theta) and a related integral</a>, J. Comp. Appl. Math. 11 (1984) 325-330.
%H K. S. Kolbig, <a href="http://dx.doi.org/10.1016/0377-0427(95)00150-6">Chebyshev coefficients for the Clausen function Cl_2(x)</a>, J. Comp. Appl. Math. 64 (1995) 295-297.
%H Vincent Nguyen, <a href="https://arxiv.org/abs/2304.11614">On Some Series Involving Harmonic and Skew-Harmonic Numbers</a>, arXiv:2304.11614 [math.CA], 2023.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GiesekingsConstant.html">Gieseking's Constant</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Gieseking_manifold">Gieseking manifold</a>.
%F Equals (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4*sqrt(3)).
%F Equals Sum_{k>0} sin(k*Pi/3)/k^2; (also equals (sqrt(3)/2)*Sum_{k>=1} -1/(6k-1)^2 - 1/(6k-2)^2 + 1/(6k-4)^2 + 1/(6k-5)^2). - _Jean-François Alcover_, Jun 19 2016, from the book by J. & P. Borwein.
%F From _Amiram Eldar_, Aug 14 2020: (Start)
%F Equals Integral_{x=0..2*Pi/3} log(2*cos(x/2)).
%F Equals (3*sqrt(3)/4) * (1 - Sum_{k>=0} 1/(3*k + 2)^2 + Sum_{k>=1} 1/(3*k + 1)^2) = (3*sqrt(3)/4) * Sum_{k>=1} A049347(k-1)/k^2.
%F Equals Pi * A244996 = Pi * log(A242710). (End)
%F Equals A091518/2 = A244345/5. - _Hugo Pfoertner_, Sep 16 2024
%e 1.0149416064096536250...
%p sqrt(3)/6*(Psi(1,1/3)-2*Pi^2/3) ; evalf(%) ; # _R. J. Mathar_, Sep 23 2013
%t N[(9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]), 105] // RealDigits // First
%o (PARI)
%o polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
%o sqrt(3)/6*(polygamma(1, 1/3) - 2*Pi^2/3)
%o (9 - polygamma(1, 2/3) + polygamma(1, 4/3))/(4*sqrt(3)) \\ _Gheorghe Coserea_, Sep 30 2018
%o (PARI)
%o clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
%o clausen(2, Pi/3) \\ _Gheorghe Coserea_, Sep 30 2018
%o (PARI)
%o sqrt(3)/2 * sumpos(n=1, 1/(6*n-4)^2 + 1/(6*n-5)^2 - 1/(6*n-1)^2 - 1/(6*n-2)^2) \\ _Gheorghe Coserea_, Sep 30 2018
%Y Cf. A091518, A242710, A244345, A244996.
%K nonn,cons
%O 1,4
%A _Eric W. Weisstein_, Aug 05 2008