This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070435 a(n) = n^2 mod 12, or alternately n^4 mod 12. 15
 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Period 6: repeat [0,1,4,9,4,1]. Occurs in Mariotte reference, pp. 511-512. Consider waterjets of heights 0,5,10, ... = A008587 up to 100 pieds (feet). a(n) is the difference in pouces (inches) between tank's heights (in feet and inches) and part in feet (0,5,10,15,21,..). Row with 0's is implicit. - Paul Curtz, Nov 18 2008 a(m*n) = a(m)*a(n) mod 12; a(6*n+k) = a(6*n-k) for k <= 6*n. - Reinhard Zumkeller, Apr 24 2009 n^z mod 12, if z even number. Example: n^180 mod 12. etc... - Zerinvary Lajos, Nov 06 2009 Equivalently: n^(2*m + 2) mod 12. - G. C. Greubel, Apr 01 2016 REFERENCES Edme Mariotte, Règles pour les jets d'eau, pp. 508-518. In Divers ouvrages de mathématique et de physique par Messieurs de l'Académie Royale des Sciences, 6, 518, 1 p., Paris, 1693. Edme Mariotte (1620-1684) is known for the perfect gas law (1676, Essai sur l'air), but later than Robert Boyle (1662). - Paul Curtz, Nov 18 2008 LINKS Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 1). FORMULA a(n) = (1/45)*(17*(n mod 6) + 32*((n+1) mod 6) + 47*((n+2) mod 6) - 28*((n+3) mod 6) - 13*((n+4) mod 6) + 2*((n+5) mod 6)). - Paolo P. Lava, Nov 27 2008 G.f.: x*(1 + 4*x + 9*x^2 + 4*x^3 + x^4)/((1 - x)*(1 + x)*(1 + x + x^2)*(1 - x + x^2)). - R. J. Mathar, Jul 23 2009 a(n) = (1/6)*(19 - 3*(-1)^n - 24*cos(n*Pi/3) + 8*cos(2*n*Pi/3)). - G. C. Greubel, Apr 01 2016 a(n) = A260686(n)^2. - Wesley Ivan Hurt, Apr 01 2016 MAPLE A070435:=n->n^2 mod 12: seq(A070435(n), n=0..100); # Wesley Ivan Hurt, Apr 01 2016 MATHEMATICA Table[Mod[n^2, 12], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) LinearRecurrence[{0, 0, 0, 0, 0, 1}, {0, 1, 4, 9, 4, 1}, 101] (* Ray Chandler, Aug 26 2015 *) PowerMod[Range[0, 100], 2, 12] (* Wesley Ivan Hurt, Apr 02 2016 *) PROG (Sage) [power_mod(n, 4, 12) for n in xrange(0, 101)] # Zerinvary Lajos, Oct 31 2009 (PARI) a(n)=n^2%12 \\ Charles R Greathouse IV, Sep 23 2013 (MAGMA) [Modexp(n, 2, 12): n in [0..100]]; // Wesley Ivan Hurt, Apr 01 2016 CROSSREFS Cf. A000290, A008959, A070431, A070438, A070442, A070452, A159852, A260686. Sequence in context: A285323 A321219 A178143 * A070516 A143298 A177839 Adjacent sequences:  A070432 A070433 A070434 * A070436 A070437 A070438 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, May 12 2002 EXTENSIONS Incorrect g.f. removed by Georg Fischer, May 15 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 22:10 EDT 2019. Contains 327088 sequences. (Running on oeis4.)