login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365325
Triangular array read by rows. T(n,k) is the number of labeled digraphs (with self loops allowed) on [n] containing exactly k primitive components, n>=0, 0<=k<=n.
0
1, 1, 1, 4, 9, 3, 51, 298, 138, 25, 1831, 40815, 17853, 4494, 543, 166930, 23752151, 7418420, 1861755, 325895, 29281, 36681301, 55427713806, 10701675348, 2105585760, 391017795, 53021223, 3781503
OFFSET
0,4
COMMENTS
A primitive component (A070322) is a strongly connected component (A003030) such that the gcd of the lengths of its cycles is 1.
LINKS
E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
FORMULA
Sum_{n>=0} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(y*p(x)-1)+ s(2x) - (p(x)-1))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), p(x) is the e.g.f. for A070322, s(x) is the e.g.f. for A003030 and @ is the exponential Hadamard product (see Panafieu and Dovgal).
EXAMPLE
Triangle begins
1;
1, 1;
4, 9, 3;
51, 298, 138, 25;
1831, 40815, 17853, 4494, 543;
...
MATHEMATICA
nn = 6; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; primitive =
Select[Import["https://oeis.org/A070322/b070322.txt", "Table"],
Length@# == 2 &][[All, 2]]; pr[x_] := Total[primitive Table[x^i/i!, {i, 0, 6}]]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];
Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[- (y (pr[x] - 1) + s[2 x] - (pr[x] - 1))]], {x,
0, nn}], {x, y}]] // Grid
CROSSREFS
Cf. A002416 (row sums), A003024 (main diagonal), A070322, A003030, A361269.
Sequence in context: A219731 A217393 A285323 * A321219 A178143 A070435
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Oct 22 2023
STATUS
approved