OFFSET
1,1
COMMENTS
For n >= 3 the n-cycle graph is a simple graph. In the case of n=1 the graph is a loop and for n=2 a double edge.
The number of spanning subgraphs of the n-cycle graph is given by 2^n which is also the sum of the n-th row Sum_{k=1..n} T(n,k).
The average domination number is given by (Sum_{k=1..n} k*T(n,k))/2^n.
The relative average domination number is given by ((Sum_{k=1..n} k*T(n,k))/2^n)/n.
LINKS
Roman Hros, Table of n, a(n) for n = 1..253 (Rows n = 1..22)
Roman Hros, Effective Enumeration of Selected Graph Characteristics, IIT.SRC 2020: 16th Student Research Conference in Informatics and Information Technologies.
FORMULA
T(n,n) = 1 for n > 1.
T(n,n-1) = T(n-1, n-2) + 1 for n > 3.
T(n,n-2) = T(n-1, n-3) + T(n, n-1) for n > 5.
T(n,n-3) = T(n-1, n-4) + T(n, n-2) - 5 for n > 6.
T(n,n-4) = T(n-1, n-5) + T(n-1, n-4) + 11 + Sum_{i=1..n-9} (i+4) for n > 8.
G.f.:
For n > 3; G(n) = x*(G(n-1) + G(n-2) + 2*G(n-3)) + g(n); where
2*(1-x)*x^(n/3) for n mod 3 = 0.
g(n) = { 0 for n mod 3 = 1.
(1-x)*x^((n+1)/3) for n mod 3 = 2.
For n mod 3 = 0:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 2 for k = n/3.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 2 for k = n/3 + 1.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= n/3 + 2.
For n mod 3 = 1:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+2)/3.
For n mod 3 = 2:
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 1 for k = (n+1)/3.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 1 for k = (n+1)/3 + 1.
T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+1)/3 + 2.
EXAMPLE
Example of spanning subgraphs of cycle with 2 vertices:
Domination number: 2 1 1 1
/\ /\
. . . . . . . .
\/ \/
The triangle T(n,k) begins:
n\k 1 2 3 4 5 6 7 8 9 10 11 12 ...
1: 2
2: 3 1
3: 4 3 1
4: 0 11 4 1
5: 0 11 15 5 1
6: 0 10 26 21 6 1
7: 0 0 43 49 28 7 1
8: 0 0 33 98 80 36 8 1
9: 0 0 22 126 189 120 45 9 1
10: 0 0 0 141 322 325 170 55 10 1
11: 0 0 0 89 462 671 517 231 66 11 1
12: 0 0 0 46 480 1162 1236 777 304 78 12 1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roman Hros, Sep 01 2023
STATUS
approved