login
Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k.
2

%I #33 Jul 20 2024 09:02:31

%S 2,3,1,4,3,1,0,11,4,1,0,11,15,5,1,0,10,26,21,6,1,0,0,43,49,28,7,1,0,0,

%T 33,98,80,36,8,1,0,0,22,126,189,120,45,9,1,0,0,0,141,322,325,170,55,

%U 10,1,0,0,0,89,462,671,517,231,66,11,1,0,0,0,46,480,1162,1236,777,304,78,12,1,0,0,0,0,417,1586,2483,2093,1118,390,91,13,1

%N Triangle read by rows: T(n,k) is the number of spanning subgraphs of the n-cycle graph with domination number k.

%C For n >= 3 the n-cycle graph is a simple graph. In the case of n=1 the graph is a loop and for n=2 a double edge.

%C The number of spanning subgraphs of the n-cycle graph is given by 2^n which is also the sum of the n-th row Sum_{k=1..n} T(n,k).

%C The average domination number is given by (Sum_{k=1..n} k*T(n,k))/2^n.

%C The relative average domination number is given by ((Sum_{k=1..n} k*T(n,k))/2^n)/n.

%H Roman Hros, <a href="/A365327/b365327.txt">Table of n, a(n) for n = 1..253 (Rows n = 1..22)</a>

%H Roman Hros, <a href="http://www2.fiit.stuba.sk/iitsrc/iit-src2020-proceedings.pdf#page=66">Effective Enumeration of Selected Graph Characteristics</a>, IIT.SRC 2020: 16th Student Research Conference in Informatics and Information Technologies.

%F T(n,n) = 1 for n > 1.

%F T(n,n-1) = T(n-1, n-2) + 1 for n > 3.

%F T(n,n-2) = T(n-1, n-3) + T(n, n-1) for n > 5.

%F T(n,n-3) = T(n-1, n-4) + T(n, n-2) - 5 for n > 6.

%F T(n,n-4) = T(n-1, n-5) + T(n-1, n-4) + 11 + Sum_{i=1..n-9} (i+4) for n > 8.

%F G.f.:

%F For n > 3; G(n) = x*(G(n-1) + G(n-2) + 2*G(n-3)) + g(n); where

%F 2*(1-x)*x^(n/3) for n mod 3 = 0.

%F g(n) = { 0 for n mod 3 = 1.

%F (1-x)*x^((n+1)/3) for n mod 3 = 2.

%F For n mod 3 = 0:

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 2 for k = n/3.

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 2 for k = n/3 + 1.

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= n/3 + 2.

%F For n mod 3 = 1:

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+2)/3.

%F For n mod 3 = 2:

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) + 1 for k = (n+1)/3.

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) - 1 for k = (n+1)/3 + 1.

%F T(n,k) = 2*T(n-3,k-1) + T(n-2,k-1) + T(n-1,k-1) for k >= (n+1)/3 + 2.

%e Example of spanning subgraphs of cycle with 2 vertices:

%e Domination number: 2 1 1 1

%e /\ /\

%e . . . . . . . .

%e \/ \/

%e The triangle T(n,k) begins:

%e n\k 1 2 3 4 5 6 7 8 9 10 11 12 ...

%e 1: 2

%e 2: 3 1

%e 3: 4 3 1

%e 4: 0 11 4 1

%e 5: 0 11 15 5 1

%e 6: 0 10 26 21 6 1

%e 7: 0 0 43 49 28 7 1

%e 8: 0 0 33 98 80 36 8 1

%e 9: 0 0 22 126 189 120 45 9 1

%e 10: 0 0 0 141 322 325 170 55 10 1

%e 11: 0 0 0 89 462 671 517 231 66 11 1

%e 12: 0 0 0 46 480 1162 1236 777 304 78 12 1

%Y Row sums are A000079.

%Y Column sums are A002063(k-1).

%Y Cf. A373436.

%K nonn,tabl

%O 1,1

%A _Roman Hros_, Sep 01 2023