The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070438 a(n) = n^2 mod 15. 12
 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1, 0, 1, 4, 9, 1, 10, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1). FORMULA From Reinhard Zumkeller, Apr 24 2009: (Start) a(m*n) = a(m)*a(n) mod 15. a(15*n+7+k) = a(15*n+8-k) for k <= 15*n+7. a(15*n+k) = a(15*n-k) for k <= 15*n. a(n+15) = a(n). (End) G.f.: (x^14 +4*x^13 +9*x^12 +x^11 +10*x^10 +6*x^9 +4*x^8 +4*x^7 +6*x^6 +10*x^5 +x^4 +9*x^3 +4*x^2 +x)/(-x^15 +1). - Colin Barker, Aug 14 2012 MATHEMATICA Table[Mod[n^2, 15], {n, 0, 200}] (* Vladimir Joseph Stephan Orlovsky, Apr 21 2011 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1}, 97] (* Ray Chandler, Aug 26 2015 *) PROG (PARI) a(n)=n^2%15 \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS Cf. A000290, A008959, A010378, A070431, A070435, A070442, A070452, A159852. Row 15 of A048152. Sequence in context: A199788 A197266 A200393 * A070638 A236104 A152205 Adjacent sequences:  A070435 A070436 A070437 * A070439 A070440 A070441 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane, May 12 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 6 13:04 EDT 2021. Contains 343585 sequences. (Running on oeis4.)