login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292287
Number of multisets of exactly n nonempty balanced binary Lyndon words with a total of 4n letters (2n zeros and 2n ones).
2
1, 1, 4, 12, 43, 142, 508, 1781, 6414, 23124, 84296, 308613, 1137129, 4207456, 15636927, 58322808, 218272766, 819319778, 3083913810, 11636761924, 44010780075, 166802192488, 633420816341, 2409731688860, 9182826866499, 35048239457878, 133965833871427
OFFSET
0,3
FORMULA
G.f.: Product_{j>=1} 1/(1-x^j)^A022553(j+1).
a(n) = A289978(2n,n).
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=0, 1, add(
mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2023, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A149354 A197659 A360468 * A003444 A220881 A149355
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 20 2017
STATUS
approved