Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Nov 23 2023 10:36:59
%S 1,1,4,12,43,142,508,1781,6414,23124,84296,308613,1137129,4207456,
%T 15636927,58322808,218272766,819319778,3083913810,11636761924,
%U 44010780075,166802192488,633420816341,2409731688860,9182826866499,35048239457878,133965833871427
%N Number of multisets of exactly n nonempty balanced binary Lyndon words with a total of 4n letters (2n zeros and 2n ones).
%H Alois P. Heinz, <a href="/A292287/b292287.txt">Table of n, a(n) for n = 0..1667</a>
%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>
%F G.f.: Product_{j>=1} 1/(1-x^j)^A022553(j+1).
%F a(n) = A289978(2n,n).
%p with(numtheory):
%p g:= proc(n) option remember; `if`(n=0, 1, add(
%p mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n))
%p end:
%p a:= proc(n) option remember; `if`(n=0, 1, add(add(
%p d*g(d+1), d=divisors(j))*a(n-j), j=1..n)/n)
%p end:
%p seq(a(n), n=0..30);
%t g[n_] := g[n] = If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]/(2n)];
%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*g[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 23 2023, after _Alois P. Heinz_ *)
%Y Cf. A022553, A289978.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 20 2017