login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290277
Inverse Euler Transform of the Motzkin Numbers.
4
1, 1, 2, 4, 10, 22, 56, 136, 348, 890, 2332, 6136, 16380, 43988, 119170, 324720, 890290, 2452752, 6789308, 18868520, 52635730, 147323176, 413618614, 1164510896, 3287073450, 9300500508, 26372968632, 74937133488, 213333642442, 608400799010, 1737954608280
OFFSET
1,3
COMMENTS
The Multiset Transform of this sequence generates a triangle with rows n >= 0, columns k >= 0:
1;
0, 1;
0, 1, 1;
0, 2, 1, 1;
0, 4, 3, 1, 1;
0, 10, 6, 3, 1, 1;
0, 22, 17, 7, 3, 1, 1;
0, 56, 40, 19, 7, 3, 1, 1;
0, 136, 108, 47, 20, 7, 3, 1, 1;
0, 348, 276, 130, 49, 20, 7, 3, 1, 1;
0, 890, 739, 340, 137, 50, 20, 7, 3, 1, 1;
0, 2332, 1954, 929, 362, 139, 50, 20, 7, 3, 1, 1;
0, 6136, 5275, 2511, 998, 369, 140, 50, 20, 7, 3, 1, 1;
0, 16380, 14232, 6893, 2717, 1020, 371, 140, 50, 20, 7, 3, 1, 1;
0, 43988, 38808, 18911, 7520, 2786, 1027, 372, 140, 50, 20, 7, 3, 1, 1;
where a(n) defines the column k=1, and where the row sums are the Motzkin numbers, A001006. The question is: what set of or statistics on Motzkin paths of length n do the entries in row n of the triangle describe/refine?
a(n) is the number of Lyndon words of length n of a 3-letter alphabet {0,1,2} where the frequency of the first letter of the alphabet equals the frequency of the second letter of the alphabet (subset of the words in A027376). For n=1 this is (2), for n=2 this is (01), for n=3 these are (012), (021), for n=4 these are (0011) (0122) (0212) (0221), for n=5 these are (00112) (00121) (00211) (01012) (01021) (01102) (01222) (02122) (02212) (02221). - R. J. Mathar, Oct 26 2021
FORMULA
a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 09 2019
Conjecture: n*a(n) = Sum_{d|n} mobius(d)*A002426(n/d) where mobius=A008683. - R. J. Mathar, Nov 05 2021
MAPLE
read(transforms); # https://oeis.org/transforms.txt
[seq(A001006(n), n=1..20)] ;
EULERi(%) ;
CROSSREFS
Cf. A001006.
Sequence in context: A348009 A121285 A221536 * A030234 A205490 A221839
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 25 2017
STATUS
approved