login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121285
a(0) = 1; for n>0, a(n) = (n+3)*2^(n-2)-n*binomial(n-1, floor( (n-1)/2 ))-(n-1)*binomial(n-2,floor((n-2)/2)).
0
1, 1, 2, 4, 10, 22, 54, 120, 284, 626, 1438, 3136, 7044, 15212, 33596, 71952, 156856, 333610, 719886, 1522224, 3257972, 6855476, 14574772, 30541264, 64571400, 134827252, 283727564, 590608960, 1237926184, 2569953496, 5368225848, 11118205088, 23155034480, 47856472218
OFFSET
0,3
LINKS
A. Bernini, F. Disanto, R. Pinzani and S. Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007) # 07.9.7. [See S_{n+1}.]
F. Disanto and S. Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22 (2011), No. 1, pp. 39-60. - From N. J. A. Sloane, May 04 2012
FORMULA
Conjecture: -(n-1)*(3*n^2-27*n+56)*a(n) +2*(n-5)*(3*n^2-12*n+5)*a(n-1) +4*(3*n^3-33*n^2+110*n-118)*a(n-2) -8*(n-3)*(3*n^2-21*n+32)*a(n-3)=0. - R. J. Mathar, Jan 04 2017
MATHEMATICA
Join[{1}, Table[((n+3)2^(n-2))-(n Binomial[n-1, Floor[(n-1)/2]]) -((n-1)Binomial[n-2, Floor[(n-2)/2]]), {n, 50}]] (* Harvey P. Dale, Mar 17 2011 *)
CROSSREFS
Sequence in context: A240041 A164990 A348009 * A221536 A290277 A030234
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 28 2007
STATUS
approved