Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jan 07 2022 19:35:33
%S 1,1,2,4,10,22,56,136,348,890,2332,6136,16380,43988,119170,324720,
%T 890290,2452752,6789308,18868520,52635730,147323176,413618614,
%U 1164510896,3287073450,9300500508,26372968632,74937133488,213333642442,608400799010,1737954608280
%N Inverse Euler Transform of the Motzkin Numbers.
%C The Multiset Transform of this sequence generates a triangle with rows n >= 0, columns k >= 0:
%C 1;
%C 0, 1;
%C 0, 1, 1;
%C 0, 2, 1, 1;
%C 0, 4, 3, 1, 1;
%C 0, 10, 6, 3, 1, 1;
%C 0, 22, 17, 7, 3, 1, 1;
%C 0, 56, 40, 19, 7, 3, 1, 1;
%C 0, 136, 108, 47, 20, 7, 3, 1, 1;
%C 0, 348, 276, 130, 49, 20, 7, 3, 1, 1;
%C 0, 890, 739, 340, 137, 50, 20, 7, 3, 1, 1;
%C 0, 2332, 1954, 929, 362, 139, 50, 20, 7, 3, 1, 1;
%C 0, 6136, 5275, 2511, 998, 369, 140, 50, 20, 7, 3, 1, 1;
%C 0, 16380, 14232, 6893, 2717, 1020, 371, 140, 50, 20, 7, 3, 1, 1;
%C 0, 43988, 38808, 18911, 7520, 2786, 1027, 372, 140, 50, 20, 7, 3, 1, 1;
%C where a(n) defines the column k=1, and where the row sums are the Motzkin numbers, A001006. The question is: what set of or statistics on Motzkin paths of length n do the entries in row n of the triangle describe/refine?
%C a(n) is the number of Lyndon words of length n of a 3-letter alphabet {0,1,2} where the frequency of the first letter of the alphabet equals the frequency of the second letter of the alphabet (subset of the words in A027376). For n=1 this is (2), for n=2 this is (01), for n=3 these are (012), (021), for n=4 these are (0011) (0122) (0212) (0221), for n=5 these are (00112) (00121) (00211) (01012) (01021) (01102) (01222) (02122) (02212) (02221). - _R. J. Mathar_, Oct 26 2021
%H Alois P. Heinz, <a href="/A290277/b290277.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>
%F a(n) ~ 3^(n + 1/2) / (2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 09 2019
%F Conjecture: n*a(n) = Sum_{d|n} mobius(d)*A002426(n/d) where mobius=A008683. - _R. J. Mathar_, Nov 05 2021
%p read(transforms); # https://oeis.org/transforms.txt
%p [seq(A001006(n),n=1..20)] ;
%p EULERi(%) ;
%Y Cf. A001006.
%K nonn
%O 1,3
%A _R. J. Mathar_, Jul 25 2017