login
A022389
Fibonacci sequence beginning 7, 15.
3
7, 15, 22, 37, 59, 96, 155, 251, 406, 657, 1063, 1720, 2783, 4503, 7286, 11789, 19075, 30864, 49939, 80803, 130742, 211545, 342287, 553832, 896119, 1449951, 2346070, 3796021, 6142091, 9938112, 16080203, 26018315, 42098518, 68116833, 110215351, 178332184
OFFSET
0,1
FORMULA
G.f.: (7+8*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 7*Fibonacci(n+2) + Fibonacci(n) = 7*Fibonacci(n-1) + 15*Fibonacci(n). - G. C. Greubel, Mar 02 2018
a(n) = Fibonacci(n+6) + Lucas(n-1). - Greg Dresden and Russ Zimmerman, Mar 03 2022
MAPLE
with(combinat, fibonacci): seq(7*fibonacci(n+2)+fibonacci(n), n=0..35); # Muniru A Asiru, Mar 03 2018
MATHEMATICA
LinearRecurrence[{1, 1}, {7, 15}, 40] (* Harvey P. Dale, Aug 27 2013 *)
Table[7*Fibonacci[n+2] + Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
PROG
(PARI) for(n=0, 50, print1(7*fibonacci(n+2) + fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
(Magma) [7*Fibonacci(n+2) + Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
(GAP) List([0..35], n->7*Fibonacci(n+2)+Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
CROSSREFS
Cf. A000032.
Sequence in context: A274700 A022552 A082658 * A041225 A128840 A041935
KEYWORD
nonn,easy
STATUS
approved