This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022387 Fibonacci sequence beginning 4, 30. 1
 4, 30, 34, 64, 98, 162, 260, 422, 682, 1104, 1786, 2890, 4676, 7566, 12242, 19808, 32050, 51858, 83908, 135766, 219674, 355440, 575114, 930554, 1505668, 2436222, 3941890, 6378112, 10320002, 16698114, 27018116, 43716230, 70734346, 114450576, 185184922, 299635498, 484820420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1, 1). FORMULA G.f.: (4+26*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008 a(n) = 4*Fibonacci(n+2) + 22*fibonacci(n) = 4*Fibonacci(n-1) + 30*Fibonacci(n). - G. C. Greubel, Mar 02 2018 MAPLE with(combinat, fibonacci):  seq(4*fibonacci(n+2)+22*fibonacci(n), n=0..35); # Muniru A Asiru, Mar 03 2018 MATHEMATICA LinearRecurrence[{1, 1}, {4, 30}, 30] (* Harvey P. Dale, Oct 16 2012 *) CoefficientList[Series[(4 + 26 * x)/(1 - x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2012 *) Table[4 * Fibonacci[n + 2] + 22 * Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *) PROG (MAGMA) I:=[4, 30]; [n le 2 select I[n] else Self(n-1) + Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012 (PARI) for(n=0, 40, print1(4*fibonacci(n+2) + 22*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 01 2018 (MAGMA) [4*Fibonacci(n+2) + 22*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 01 2018 (GAP) List([0..40], n->4*Fibonacci(n+2)+22*Fibonacci(n)); # Muniru A Asiru, Mar 03 2018 CROSSREFS Equals 2 * A022117. Sequence in context: A159862 A298648 A164820 * A108559 A167395 A268037 Adjacent sequences:  A022384 A022385 A022386 * A022388 A022389 A022390 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 00:07 EST 2018. Contains 318052 sequences. (Running on oeis4.)