login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298648 Number of smallest coverings of the n-dipyramidal graph by maximal cliques. 2
1, 4, 30, 12, 98, 28, 270, 60, 682, 124, 1638, 252, 3810, 508, 8670, 1020, 19418, 2044, 42966, 4092, 94162, 8188, 204750, 16380, 442314, 32764, 950214, 65532, 2031554, 131068, 4325310, 262140, 9174970, 524284, 19398582, 1048572, 40894386, 2097148, 85983150 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

LINKS

Muniru A Asiru, Table of n, a(n) for n = 3..700

Eric Weisstein's World of Mathematics, Dipyramidal Graph

Eric Weisstein's World of Mathematics, Maximal Clique

Eric Weisstein's World of Mathematics, Minimum Clique Covering

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-13,0,12,0,-4)

FORMULA

a(2*k) = 2^(k+1) - 4, a(2*k-1) = (2*k-1)*(2^k - 2) for k > 2. - Andrew Howroyd, Jun 27 2018

From Colin Barker, Jul 20 2019: (Start)

G.f.: x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2).

a(n) = (1 + (-1)^n)*(-2+2^(n/2)) + ((-1+(-1)^n)*(sqrt(2) - 2^(n/2))*n)/sqrt(2) for n>3.

a(n) = 6*a(n-2) - 13*a(n-4) + 12*a(n-6) - 4*a(n-8) for n>8.

(End)

MAPLE

seq(coeff(series((1+4*x+24*x^2-12*x^3-69*x^4+8*x^5+60*x^6-20*x^8)/(1-3*x^2+2*x^4)^2, x, n+1), x, n), n=0..38); # Muniru A Asiru, Jul 02 2018

MATHEMATICA

Join[{1}, Table[If[Mod[n, 2] == 0, 2, n] (2^Ceiling[n/2] - 2), {n, 4, 20}]]

Join[{1}, Table[2 (1 + (-1)^n) (2^(n/2 - 1) - 1) + (1 - (-1)^n) (2^((n - 1)/2) - 1) n, {n, 4, 20}]]

Join[{1}, LinearRecurrence[{0, 6, 0, -13, 0, 12, 0, -4}, {4, 30, 12, 98, 28, 270, 60, 682}, 20]]

CoefficientList[Series[(1 + 4 x + 24 x^2 - 12 x^3 - 69 x^4 + 8 x^5 + 60 x^6 - 20 x^8)/(1 - 3 x^2 + 2 x^4)^2, {x, 0, 20}], x]

PROG

(PARI) a(n)={if(n==3, 1, if(n%2, n, 2)*(2^ceil(n/2)-2))} \\ Andrew Howroyd, Jun 27 2018

(PARI) Vec(x^3*(1 + 4*x + 24*x^2 - 12*x^3 - 69*x^4 + 8*x^5 + 60*x^6 - 20*x^8) / ((1 - x)^2*(1 + x)^2*(1 - 2*x^2)^2) + O(x^45)) \\ Colin Barker, Jul 20 2019

CROSSREFS

Cf. A110654 (clique covering number of the n-dipyramidal graph).

Sequence in context: A126559 A213795 A159862 * A164820 A022387 A108559

Adjacent sequences:  A298645 A298646 A298647 * A298649 A298650 A298651

KEYWORD

nonn,easy

AUTHOR

Eric W. Weisstein, Jun 18 2018

EXTENSIONS

Terms a(19) and beyond from Andrew Howroyd, Jun 27 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 19:48 EDT 2022. Contains 357172 sequences. (Running on oeis4.)