login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298647
Number of Dyck paths of semilength n having maximal degree of asymmetry, namely n-1 for n>2 and 0 otherwise.
3
1, 1, 2, 2, 2, 8, 16, 52, 134, 432, 1248, 4104, 12648, 42464, 136512, 466568, 1545566, 5361632, 18165184, 63804952, 219997832, 780895392, 2730730176, 9780049008, 34598622616, 124873507904, 446068180608, 1620786592416, 5837657948832, 21336295622016, 77395590570240
OFFSET
0,3
COMMENTS
The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, by 1,2,..., n-1, n, n, n-1, ..., 2,1. The degree of asymmetry is defined to be the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path UDUUDD has degree of asymmetry 2. Indeed, the labels are 123321 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.
LINKS
FORMULA
a(n) = A298645(n,n-1) for n > 2.
a(n) ~ 2^(2*n + 3) / (Pi * n^3). - Vaclav Kotesovec, Mar 06 2018
EXAMPLE
a(1) = 1, counting UD; a(2) = 2 since both UDUD and UUDD have maximal degree of asymmetry 0; a(5) = 8 counting UDUUUUDDDD, UDUDUUUDDD, UDUUDDUUDD, UDUDUUDUDD, and their reflections in a vertical axis.
MAPLE
b:= proc(x, y, v) option remember; expand(
`if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(
`if`(y=v+(j-i)/2, 1, z)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))
end:
a:= n-> lcoeff(add(b(n, j$2), j=0..n)):
seq(a(n), n=0..40);
# second Maple program:
a:= proc(n) option remember; `if`(n<8, [1$2, 2$3, 8, 16, 52][n+1],
(256*(n-4)*(n-5)*(n-8)*(147*n^5-1708*n^4+7165*n^3-12896*n^2+8882*n
-1362)*a(n-6)-64*(294*n^7-6139*n^6+52088*n^5-227713*n^4+534530*n^3
-630478*n^2+295718*n-24240)*a(n-5)-16*(3675*n^8-96943*n^7+1072857
*n^6-6448749*n^5+22718880*n^4-46984656*n^3+53484228*n^2-28042052*n
+3963360)*a(n-4)-24*(1470*n^7-30345*n^6+256611*n^5-1138707*n^4
+2807363*n^3-3706740*n^2+2239444*n-369120)*a(n-3)+4*(n-2)*(1470
*n^7-27958*n^6+211755*n^5-810763*n^4+1642737*n^3-1686751*n^2+790686
*n-150480)*a(n-2)+2*(n-1)*(882*n^6-14357*n^5+89078*n^4-262023*n^3
+370096*n^2-233344*n+64320)*a(n-1))/((147*n^5-2443*n^4+15467*n^3
-46109*n^2+63736*n-32160)*(n-1)*n*(n+1)))
end:
seq(a(n), n=0..40);
MATHEMATICA
b[x_, y_, v_] := b[x, y, v] = Expand[
If[Min[y, v, x - Max[y, v]]<0, 0, If[x==0, 1, Function[l, Sum[Sum[
If[y == v+(j-i)/2, 1, z] b[x-1, y+i, v+j], {i, l}], {j, l}]][{-1, 1}]]]];
a[n_] := With[{p = Sum[b[n, j, j], {j, 0, n}]}, Coefficient[p, z, Exponent[p, z]]];
a /@ Range[0, 40] (* Jean-François Alcover, Dec 30 2020, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A341445 (for n>2).
Sequence in context: A220254 A220177 A220805 * A068718 A075097 A138056
KEYWORD
nonn
AUTHOR
STATUS
approved