login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Dyck paths of semilength n having maximal degree of asymmetry, namely n-1 for n>2 and 0 otherwise.
3

%I #27 Feb 12 2021 18:47:00

%S 1,1,2,2,2,8,16,52,134,432,1248,4104,12648,42464,136512,466568,

%T 1545566,5361632,18165184,63804952,219997832,780895392,2730730176,

%U 9780049008,34598622616,124873507904,446068180608,1620786592416,5837657948832,21336295622016,77395590570240

%N Number of Dyck paths of semilength n having maximal degree of asymmetry, namely n-1 for n>2 and 0 otherwise.

%C The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, by 1,2,..., n-1, n, n, n-1, ..., 2,1. The degree of asymmetry is defined to be the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path UDUUDD has degree of asymmetry 2. Indeed, the labels are 123321 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.

%H Alois P. Heinz, <a href="/A298647/b298647.txt">Table of n, a(n) for n = 0..1676</a>

%F a(n) = A298645(n,n-1) for n > 2.

%F a(n) ~ 2^(2*n + 3) / (Pi * n^3). - _Vaclav Kotesovec_, Mar 06 2018

%e a(1) = 1, counting UD; a(2) = 2 since both UDUD and UUDD have maximal degree of asymmetry 0; a(5) = 8 counting UDUUUUDDDD, UDUDUUUDDD, UDUUDDUUDD, UDUDUUDUDD, and their reflections in a vertical axis.

%p b:= proc(x, y, v) option remember; expand(

%p `if`(min(y, v, x-max(y, v))<0, 0, `if`(x=0, 1, (l-> add(add(

%p `if`(y=v+(j-i)/2, 1, z)*b(x-1, y+i, v+j), i=l), j=l))([-1, 1]))))

%p end:

%p a:= n-> lcoeff(add(b(n, j$2), j=0..n)):

%p seq(a(n), n=0..40);

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n<8, [1$2, 2$3, 8, 16, 52][n+1],

%p (256*(n-4)*(n-5)*(n-8)*(147*n^5-1708*n^4+7165*n^3-12896*n^2+8882*n

%p -1362)*a(n-6)-64*(294*n^7-6139*n^6+52088*n^5-227713*n^4+534530*n^3

%p -630478*n^2+295718*n-24240)*a(n-5)-16*(3675*n^8-96943*n^7+1072857

%p *n^6-6448749*n^5+22718880*n^4-46984656*n^3+53484228*n^2-28042052*n

%p +3963360)*a(n-4)-24*(1470*n^7-30345*n^6+256611*n^5-1138707*n^4

%p +2807363*n^3-3706740*n^2+2239444*n-369120)*a(n-3)+4*(n-2)*(1470

%p *n^7-27958*n^6+211755*n^5-810763*n^4+1642737*n^3-1686751*n^2+790686

%p *n-150480)*a(n-2)+2*(n-1)*(882*n^6-14357*n^5+89078*n^4-262023*n^3

%p +370096*n^2-233344*n+64320)*a(n-1))/((147*n^5-2443*n^4+15467*n^3

%p -46109*n^2+63736*n-32160)*(n-1)*n*(n+1)))

%p end:

%p seq(a(n), n=0..40);

%t b[x_, y_, v_] := b[x, y, v] = Expand[

%t If[Min[y, v, x - Max[y, v]]<0, 0, If[x==0, 1, Function[l, Sum[Sum[

%t If[y == v+(j-i)/2, 1, z] b[x-1, y+i, v+j], {i, l}], {j, l}]][{-1, 1}]]]];

%t a[n_] := With[{p = Sum[b[n, j, j], {j, 0, n}]}, Coefficient[p, z, Exponent[p, z]]];

%t a /@ Range[0, 40] (* _Jean-François Alcover_, Dec 30 2020, after _Alois P. Heinz_ *)

%Y Cf. A298645, A298646.

%Y Column k=1 of A341445 (for n>2).

%K nonn

%O 0,3

%A _Emeric Deutsch_ and _Alois P. Heinz_, Feb 21 2018