|
|
A159862
|
|
Main diagonal of A159861.
|
|
2
|
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
The length (number of decimal digits) of a(n) may be a power of 2 and often simply doubles, when n is increased by 1. But there are many exceptions: n = 11, 12, 13 give lengths 2^8, 3*2^7, 2^9, respectively. A factor of 3 is found in the lengths of a(n) for n = 12, 112..123, 1113..1234, 11123..12345, and so on. A factor of 7 is found for n = 1112, 11112..11122, and so on. 15 is factor of the length of a(11111112).
|
|
LINKS
|
|
|
MAPLE
|
R:= (S, m)-> iquo(S+m-1, m):
A:= proc(m, n) option remember; `if`(n=1, 1,
R(parse(cat(seq(A(m, j), j=1..n-1))), m))
end:
a:= n-> A(n, n):
seq(a(n), n=1..10);
|
|
MATHEMATICA
|
R[S_, m_] := Quotient[S + m - 1, m];
A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
a[n_] := A[n, n];
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|