login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159861
Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).
2
1, 1, 1, 11, 1, 1, 1111, 6, 1, 1, 11111111, 58, 4, 1, 1, 1111111111111111, 5829, 38, 3, 1, 1, 11111111111111111111111111111111, 58292915, 3813, 29, 3, 1, 1, 1111111111111111111111111111111111111111111111111111111111111111, 5829291479146458, 38127938, 2833, 23, 2, 1, 1
OFFSET
1,4
LINKS
EXAMPLE
A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
Square array A(m,n) begins:
1, 1, 11, 1111, 11111111, 1111111111111111, ...
1, 1, 6, 58, 5829, 58292915, ...
1, 1, 4, 38, 3813, 38127938, ...
1, 1, 3, 29, 2833, 28323209, ...
1, 1, 3, 23, 2265, 22646453, ...
1, 1, 2, 19, 1870, 18698645, ...
MAPLE
R:= (S, m)-> iquo(S+m-1, m):
A:= proc(m, n) option remember; `if`(n=1, 1,
R(parse(cat(seq(A(m, j), j=1..n-1))), m))
end:
seq(seq(A(m, d-m), m=1..d-1), d=1..10);
MATHEMATICA
R[S_, m_] := Quotient[S + m - 1, m];
A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 13 2023, after Maple code *)
CROSSREFS
Row m=2 gives: A156147.
Main diagonal gives: A159862.
Sequence in context: A173006 A015125 A290552 * A010197 A010196 A039617
KEYWORD
easy,nonn,tabl,base
AUTHOR
Eric Angelini and Alois P. Heinz, Apr 24 2009
STATUS
approved