login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156147 a(n+1) = round( c(n)/2 ), where c(n) is the concatenation of all preceding terms a(1)...a(n) and a(1)=1. 4
1, 1, 6, 58, 5829, 58292915, 5829291479146458, 58292914791464577914645739573229, 5829291479146457791464573957322929146457395732288957322869786615 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Originally, round( c/2 ) was formulated as "rank of c in the sequence of odd resp. even (positive) numbers".

The sequence has some characteristics reminiscent of Thue-Morse type sequences. It "converges" to a non-periodic sequence of digits: all but the last digit of a given term will remain the initial digits of all subsequent terms. - M. F. Hasler

It's interesting that the number of digits of a(k) for k>2 equals to 2^(k-3). - Farideh Firoozbakht

LINKS

M. F. Hasler et al., Table of n, a(n) for n = 1..12

E. Angelini, Rang dans les Pairs/Impairs

E. Angelini, Rang dans les Pairs/Impairs [Cached copy, with permission]

E. Angelini et al., Rank of n in the Odd/Even sequence and follow-up messages on the SeqFan list, Feb 03 2009

MAPLE

rank:= n-> `if`(irem(n, 2)=0, n/2, (n+1)/2): a:= proc(n) option remember; if n=1 then 1 else rank(parse(cat(seq(a(j), j=1..n-1)))) fi end: seq(a(n), n=1..10);  # Alois P. Heinz

MATHEMATICA

a[1]=1; a[n_]:=a[n]=(v={}; Do[v= Join[v, IntegerDigits[a[k]]], {k, n-1}]; Floor[(1+FromDigits[v])/2]) (* Farideh Firoozbakht *)

PROG

(PARI) A156147(n)={local(a=1, t=1); while(n-->1, t=round(1/2*a=eval(Str(a, t)))); t} /* M. F. Hasler */

CROSSREFS

Cf. A156146 (other starting values).

Sequence in context: A302922 A274985 A034982 * A024269 A224757 A114501

Adjacent sequences:  A156144 A156145 A156146 * A156148 A156149 A156150

KEYWORD

base,easy,nonn

AUTHOR

Eric Angelini, Alois P. Heinz, Farideh Firoozbakht and M. F. Hasler, Feb 04 2009

EXTENSIONS

Typos fixed by Charles R Greathouse IV, Oct 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 08:57 EDT 2019. Contains 326077 sequences. (Running on oeis4.)