login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156147
a(n+1) = round( c(n)/2 ), where c(n) is the concatenation of all preceding terms a(1)...a(n) and a(1)=1.
4
1, 1, 6, 58, 5829, 58292915, 5829291479146458, 58292914791464577914645739573229, 5829291479146457791464573957322929146457395732288957322869786615
OFFSET
1,3
COMMENTS
Originally, round( c/2 ) was formulated as "rank of c in the sequence of odd resp. even (positive) numbers".
The sequence has some characteristics reminiscent of Thue-Morse type sequences. It "converges" to a non-periodic sequence of digits: all but the last digit of a given term will remain the initial digits of all subsequent terms. - M. F. Hasler
It's interesting that the number of digits of a(k) for k>2 equals to 2^(k-3). - Farideh Firoozbakht
LINKS
M. F. Hasler et al., Table of n, a(n) for n = 1..12
E. Angelini, Rang dans les Pairs/Impairs [Cached copy, with permission]
E. Angelini et al., Rank of n in the Odd/Even sequence and follow-up messages on the SeqFan list, Feb 03 2009
MAPLE
rank:= n-> `if`(irem(n, 2)=0, n/2, (n+1)/2): a:= proc(n) option remember; if n=1 then 1 else rank(parse(cat(seq(a(j), j=1..n-1)))) fi end: seq(a(n), n=1..10); # Alois P. Heinz
MATHEMATICA
a[1]=1; a[n_]:=a[n]=(v={}; Do[v= Join[v, IntegerDigits[a[k]]], {k, n-1}]; Floor[(1+FromDigits[v])/2]) (* Farideh Firoozbakht *)
PROG
(PARI) A156147(n)={local(a=1, t=1); while(n-->1, t=round(1/2*a=eval(Str(a, t)))); t} /* M. F. Hasler */
CROSSREFS
Cf. A156146 (other starting values).
Sequence in context: A337594 A274985 A034982 * A024269 A224757 A354864
KEYWORD
base,easy,nonn
EXTENSIONS
Typos fixed by Charles R Greathouse IV, Oct 28 2009
STATUS
approved