Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 16 2023 16:07:34
%S 1,1,1,11,1,1,1111,6,1,1,11111111,58,4,1,1,1111111111111111,5829,38,3,
%T 1,1,11111111111111111111111111111111,58292915,3813,29,3,1,1,
%U 1111111111111111111111111111111111111111111111111111111111111111,5829291479146458,38127938,2833,23,2,1,1
%N Square array A(m,n), m>=1, n>=1, read by antidiagonals: A(m,1)=1, A(m,n) is the rank with respect to m of the concatenation of all preceding terms in row m, and the rank of S with respect to m is floor ((S+m-1)/m).
%H Alois P. Heinz, <a href="/A159861/b159861.txt">Antidiagonals n = 1..12, flattened</a>
%e A(3,4) = 38, because A(3,1).A(3,2).A(3,3) = 114, and the rank of 114 with respect to 3 is floor(116/3) = 38.
%e Square array A(m,n) begins:
%e 1, 1, 11, 1111, 11111111, 1111111111111111, ...
%e 1, 1, 6, 58, 5829, 58292915, ...
%e 1, 1, 4, 38, 3813, 38127938, ...
%e 1, 1, 3, 29, 2833, 28323209, ...
%e 1, 1, 3, 23, 2265, 22646453, ...
%e 1, 1, 2, 19, 1870, 18698645, ...
%p R:= (S,m)-> iquo(S+m-1, m):
%p A:= proc(m, n) option remember; `if`(n=1, 1,
%p R(parse(cat(seq(A(m, j), j=1..n-1))), m))
%p end:
%p seq(seq(A(m, d-m), m=1..d-1), d=1..10);
%t R[S_, m_] := Quotient[S + m - 1, m];
%t A[m_, n_] := If[n == 1, 1, R[ToExpression@StringJoin[ToString /@ Table[A[m, j], {j, 1, n - 1}]], m]];
%t Table[Table[A[m, d - m], {m, 1, d - 1}], {d, 1, 10}] // Flatten (* _Jean-François Alcover_, Feb 13 2023, after Maple code *)
%Y Row m=2 gives: A156147.
%Y Main diagonal gives: A159862.
%Y Cf. A156146, A010783.
%K easy,nonn,tabl,base
%O 1,4
%A _Eric Angelini_ and _Alois P. Heinz_, Apr 24 2009