|
|
A159864
|
|
Difference array of Fibonacci numbers A000045 read by antidiagonals.
|
|
1
|
|
|
0, 1, 1, 1, 0, -1, 2, 1, 1, 2, 3, 1, 0, -1, -3, 5, 2, 1, 1, 2, 5, 8, 3, 1, 0, -1, -3, -8, 13, 5, 2, 1, 1, 2, 5, 13, 21, 8, 3, 1, 0, -1, -3, -8, -21, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 55, 21, 8, 3, 1, 0, -1, -3, -8, -21, -55, 89, 34, 13, 5, 2, 1, 1, 2, 5, 13, 34, 89
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
|
|
FORMULA
|
Conjecture: row sums are Sum_{k=0..n} T(2n,k)=0. Sum_{k=0..n} T(2n+1,k) = A025169(n). - R. J. Mathar, May 29 2009
|
|
EXAMPLE
|
Triangle begins:
0;
1, 1;
1, 0, -1;
2, 1, 1, 2;
3, 1, 0, -1, -3;
...
|
|
MAPLE
|
A159864Q := proc(n, k) option remember; if n = 0 then combinat[fibonacci](k) ; else procname(n-1, k+1) -procname(n-1, k) ; fi; end: A159864 := proc(n, k) A159864Q(k, n-k) ; end: for n from 0 to 5 do for k from 0 to n do printf("%d, ", A159864(n, k)) ; od: od: # R. J. Mathar, May 29 2009
# second Maple program:
T:= (n, k)-> (<<0|1>, <1|1>>^(n-2*k))[1, 2]:
|
|
MATHEMATICA
|
nmax = 10; f = Table[Fibonacci[n], {n, 0, nmax}]; t = Table[Differences[f, n], {n, 0, nmax}]; Table[t[[n-k+1, k+1]], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 14 2015 *)
T[ n_, k_] := If[ k<0 || k>n, 0, Fibonacci[n - 2*k]]; Join@@Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Michael Somos, Oct 27 2022 *)
|
|
PROG
|
(PARI) {T(n, k) = If(k<0 || k>n, 0, fibonacci(n - 2*k))}; /* Michael Somos, Oct 27 2022 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|