login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A159865 Numerator of Hermite(n, 3/23). 1
1, 6, -1022, -18828, 3130860, 98465256, -15971457864, -720886192272, 113959299787152, 6785336530113120, -1044408433392582624, -78055311088952305344, 11686493481289162746048, 1061109190473073445123712, -154369376198812703738401920, -16643365586480040091602833664 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..385

FORMULA

From G. C. Greubel, Jul 14 2018: (Start)

a(n) = 23^n * Hermite(n, 3/23).

E.g.f.: exp(6*x - 529*x^2).

a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/23)^(n-2*k)/(k!*(n-2*k)!)). (End)

MATHEMATICA

Numerator[Table[HermiteH[n, 3/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *)

Table[23^n*HermiteH[n, 3/23], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)

PROG

(PARI) a(n)=numerator(polhermite(n, 3/23)) \\ Charles R Greathouse IV, Jan 29 2016

(PARI) x='x+O('x^30); Vec(serlaplace(exp(6*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018

(MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(6/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018

CROSSREFS

Cf. A159858, A159859.

Sequence in context: A080474 A079190 A203303 * A004806 A282233 A125536

Adjacent sequences:  A159862 A159863 A159864 * A159866 A159867 A159868

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Nov 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 06:24 EDT 2020. Contains 337317 sequences. (Running on oeis4.)