login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079190 Number of isomorphism classes of anti-commutative closed binary operations (groupoids) on a set of order n. 6
1, 6, 996, 31857648, 266666713602640, 929809173755713574913480, 2002123402266181527640478418179038176, 3702236248557739850415303240942330019881771301360640 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A079187(n)+A079190(n)=A001329(n).

Each a(n) is equal to the sum of the elements in row n of A079191.

LINKS

Table of n, a(n) for n=1..8.

C. van den Bosch, Closed binary operations on small sets

Index entries for sequences related to groupoids

FORMULA

a(n) = sum {1*s_1+2*s_2+...=n} (fixA[s_1, s_2, ...]/(1^s_1*s_1!*2^s_2*s2!*...)) where fixA[s_1, s_2, ...] = prod {i>=j>=1} f(i, j, s_i, s_j) where f(i, j, s_i, s_j) = {i=j, odd} (sum {d|i} (d*s_d))^(s_i*(i*s_i+1)/2) * (-1 + sum {d|i} (d*s_d))^(s_i*(i*s_i-1)/2) or {i=j, even} (sum {d|i and d/i is odd} (d*s_d))^s_i * (sum {d|i} (d*s_d))^(i*s_i^2/2) * (-1 + sum {d|i} (d*s_d))^(s_i*(i*s_i-2)/2) or {i < j} (sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j) or {i > j} (-1 + sum {d|lcm(i, j)} (d*s_d))^(gcd(i, j)*s_i*s_j)

a(n) is asymptotic to (n^binomial(n+1, 2) * (n-1)^binomial(n, 2))/n! = A079189(n)/A000142(n)

CROSSREFS

Cf. A079187, A079189, A079191.

Sequence in context: A332196 A024085 A080474 * A203303 A159865 A004806

Adjacent sequences: A079187 A079188 A079189 * A079191 A079192 A079193

KEYWORD

nonn

AUTHOR

Christian van den Bosch (cjb(AT)cjb.ie), Jan 03 2003

EXTENSIONS

Edited, corrected and extended with formula by Christian G. Bower, Dec 12 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 24 14:39 EDT 2023. Contains 361479 sequences. (Running on oeis4.)