The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022391 Fibonacci sequence beginning 1, 21. 2
 1, 21, 22, 43, 65, 108, 173, 281, 454, 735, 1189, 1924, 3113, 5037, 8150, 13187, 21337, 34524, 55861, 90385, 146246, 236631, 382877, 619508, 1002385, 1621893, 2624278, 4246171, 6870449, 11116620, 17987069, 29103689, 47090758, 76194447, 123285205, 199479652, 322764857, 522244509 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(21;n-1-k,k), n>=1, with a(-1)=20. These are the SW-NE diagonals in P(21;n,k), the (21,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004. Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1, 1). FORMULA a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=21. a(-1):=20. G.f.: (1+20*x)/(1-x-x^2). MATHEMATICA LinearRecurrence[{1, 1}, {1, 21}, 30] (* Jean-François Alcover, Feb 25 2018 *) Table[Fibonacci[n + 2] + 19*Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *) PROG (PARI) for(n=0, 50, print1(fibonacci(n+2) + 19*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018 (Magma) [Fibonacci(n+2) + 19*Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018 CROSSREFS Sequence in context: A125737 A349248 A160782 * A041890 A041892 A041894 Adjacent sequences: A022388 A022389 A022390 * A022392 A022393 A022394 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS Terms a(30) onward added by G. C. Greubel, Mar 02 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 05:56 EDT 2024. Contains 375044 sequences. (Running on oeis4.)