login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A250410
Numbers palindromic in bases 10 and 25.
20
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 494, 626, 676, 1001, 6886, 7887, 8338, 9339, 622226, 626626, 2828282, 2859582, 3304033, 3309033, 3330333, 3335333, 3361633, 3366633, 3392933, 3397933, 6603066, 6608066, 6634366, 6639366, 8986898, 9400049, 9405049, 9431349, 9436349, 9462649, 9467649, 9493949, 9498949
OFFSET
1,3
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..94 (first 82 terms from Chai Wah Wu)
MATHEMATICA
palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 25] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst
PROG
(Magma) [n: n in [0..10000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 25) eq Reverse(Intseq(n, 25))]; // Vincenzo Librandi, Nov 23 2014
(Python)
from gmpy2 import digits
def palQ(n, b): # check if n is a palindrome in base b
s = digits(n, b)
return s == s[::-1]
def palQgen10(l): # unordered generator of palindromes of length <= 2*l
if l > 0:
yield 0
for x in range(1, 10**l):
s = str(x)
yield int(s+s[-2::-1])
yield int(s+s[::-1])
A250410_list = sorted([n for n in palQgen10(6) if palQ(n, 25)])
# Chai Wah Wu, Nov 25 2014
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Nov 22 2014
STATUS
approved