|
|
A014190
|
|
Palindromes in base 3 (written in base 10).
|
|
55
|
|
|
0, 1, 2, 4, 8, 10, 13, 16, 20, 23, 26, 28, 40, 52, 56, 68, 80, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 730, 757
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Rajasekaran, Shallit, & Smith prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Ternary.
|
|
FORMULA
|
Sum_{n>=2} 1/a(n) = 2.61676111... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
|
|
MAPLE
|
isA014190 := proc(n)
local L;
L := convert(n, base, 3) ;
ListTools[Reverse](L) = L ;
end proc:
for n from 0 to 500 do
if isA014190(n) then
printf("%d, ", n) ;
end if;
|
|
MATHEMATICA
|
f[n_, b_] := Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 3], AppendTo[lst, n]], {n, 1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
|
|
PROG
|
(Magma) [n: n in [0..800] | Intseq(n, 3) eq Reverse(Intseq(n, 3))]; // Vincenzo Librandi, Sep 09 2015
(Sage)
[n for n in (0..757) if Word(n.digits(3)).is_palindrome()] # Peter Luschny, Sep 13 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|