|
|
A029955
|
|
Palindromic in base 9.
|
|
32
|
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 91, 100, 109, 118, 127, 136, 145, 154, 164, 173, 182, 191, 200, 209, 218, 227, 236, 246, 255, 264, 273, 282, 291, 300, 309, 318, 328, 337, 346, 355, 364, 373, 382, 391, 400, 410, 419, 428, 437
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 03 2020
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=2} 1/a(n) = 3.29797695... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020
|
|
MATHEMATICA
|
f[n_, b_] := Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 9], AppendTo[lst, n]], {n, 1000}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
|
|
PROG
|
(Python)
from gmpy2 import digits
def palQgen(l, b): # generator of palindromes in base b of length <= 2*l
if l > 0:
yield 0
for x in range(1, l+1):
for y in range(b**(x-1), b**x):
s = digits(y, b)
yield int(s+s[-2::-1], b)
for y in range(b**(x-1), b**x):
s = digits(y, b)
yield int(s+s[::-1], b)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|